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Abstract 
In this paper we are discussed four types potential in antiplane elasticity these are point 
dislocation, concentrated force, dislocation doublet and concentrated force doublet. It is show 
that if the axis of the concentrated force doublet is orthogonal to the direction of the dislocation 
doublet, the relevant potentials are equal. Using the obtained potentials, an integral equation for 
the curve crack problem is introduced. Some particular features of the obtained singular integral 
equation are discussed and numerical solutions and example are given. 
 . 
Keywords: Potentials in antiplane elasticity; Curve crack problem; Numerical solution of 
integral equation. 
 
 
1. Introduction: 
After distributing density of the appropriate potential along the curve, one can model the curve 
crack problem in antiplane elasticity, which results in a hyper singular integral equation [6]. 
According to [2, 3], placing a particular force doublet along a line, the crack problem in plane 
and antiplane elasticity can be solved. However, less attention was paid to the curve crack 
problem in [2, 3]. In this paper potentials and singular integral equation suitable for solving 
curve crack problem are developed by using the Cauchy type integral and Sokhotskii-Plemelj 
formula [4]. A numerical technique is suggested to solve the obtained singular integral equations.  
Four types of the potential in antiplane elasticity are defined in the whole plane with the singular 
point 𝑧 = 𝑎. We are derived from  point dislocation at  point 𝑧 = 𝑎,  concentrated force at point 
𝑧 = 𝑎, dislocation doublet at  point 𝑧 = 𝑎 with intensity H and the direction 𝛼 and  concentrated 
force doublet at  point 𝑧 = 𝑎 with intensity B and direction𝛽. 
It is prove that if the direction of the concentrated force doublet is normally interacted to the 
direction of the dislocation doublet, the relevant potentials are equivalent. Using the obtained 
result, the distributed dislocation doublet can model the crack problem in antiplane elasticity 
more directly. 
 
2. Fundamental potentials in elasticity: 
 Potential in antiplane elasticity can be expressed  
𝜙(𝑧) = 𝐺𝜔(𝑥,𝑦)                                                                                                                           (1) 
𝜙′(𝑧) = 𝜎𝑥𝑧 − 𝜎𝑦𝑧 = 𝐺 �𝜕𝜔

𝜕𝑥
− 𝜕𝜔

𝜕𝑦
� = 𝜕𝑓

𝜕𝑦
+ 𝜕𝑓

𝜕𝑥
                                                                                  (2) 

 Where  𝐺 is the shear modulus of elasticity, 𝜔 the out of plane displacement, 𝑓 the resultant 
force function, and 𝜎𝑥𝑧 ,𝜎𝑦𝑧  the stress components . Equilibrium equation takes the form 
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𝜕𝜎𝑦𝑧
𝜕𝑦

+ 𝜕𝜎𝑥𝑧
𝜕𝑥

= 0                             (3)                                                                      
and the resultant force  
 𝑓(𝑥, 𝑦) = ∫ 𝜎𝑥𝑧𝑑𝑦 − 𝜎𝑦𝑧𝑑𝑥

𝑧
𝑧0

                                                                                                        (4) 
In (4), the domain of integration is a path connecting the fixed point 𝑧0 = 𝑎0and the generic 
point𝑧 = 𝑎. On the basis of the equilibrium Eq. (3), the integral (4) is path independent. 
In the following analysis, four potentials are introduced:  point dislocation, concentrated force,   
dislocation doublet and concentrated force doublet (Fig. 1). All of them take the point at   𝑧 = 𝑎. 
(a) The potential for the point dislocation at 𝑧 = 𝑎 is (Fig. 1(a)) 
𝜙(𝑧) = 𝐸 log(𝑧 − 𝑎)                                                                                                                                 (5) 
𝐸  is  the intensity of the point dislocation. Let {𝑔}𝑎 denote the contour increment of a function 
𝑔(𝑥, 𝑦)for the closed path around the point 𝑧 = 𝑎.in Fig. 1(a), from (1) and (5), we have 
 

 

Fig. 1. (a) A point dislocation at the point 𝑧 = 𝑎. (b) A concentrated force at the point 𝑧 = 𝑎. (c) A dislocation 
doublet at the point 𝑧 = 𝑎.with the intensity 𝐻 and direction 𝛼 and (d) A concentrated force doublet at the point 
𝑧 = 𝑎.with the intensity 𝐵and direction 𝛽. 

{𝜙}𝑎 = {𝐺𝜔}𝑎 = −2𝜋𝐸, {𝑓}𝑎 = 0                                                                                               (6) 
(b) The potential for the concentrated force at 𝑧 = 𝑎 is (Fig. 1(b)) 
𝜙(𝑧) = 𝐴 log(𝑧 − 𝑎)          
From (1) and (7), we have                                                                                                            (7)  
 {𝜙}𝑎 = {𝑓}𝑎 = 2𝜋𝐴, {𝐺𝜔}𝑎 = 0                                                                                               (8) 
(c) The potential for the dislocation doublet can be obtained by superimposing point dislocations 
with intensity −𝐻

𝑏
 and 𝐻

𝑏
  at the point 𝑧 = 𝑎 and 𝑧 = 𝑎 + 𝑏𝑒𝛼. Respectively (Fig. 1(c)), and 

letting 𝑏 → 0    
𝜙(𝑧) = lim𝑏→0

𝐻
𝑏
�log�𝑧 − (𝑎 + 𝑏𝑒𝛼)� − log(𝑧 − 𝑎)� = 𝐻

𝑎−𝑧
𝑒𝛼                                                (9) 

This potential depends on two parameters, the intensity 𝐻  and the angular value 𝛼 indicating the 
dislocation doublet axis (Fig. 1(c)). 
(d) The potential for the concentrated force doublet can be obtained in a similar manner. A 
couple of forces with intensity – 𝐵 

𝑏 
 and  𝐵 

𝑏 
   are placed at the 𝑧 = 𝑎 and 𝑧 = 𝑎 + 𝑏𝑒𝛽 respectively 

(Fig. 1(d)), and the limit for 𝑏 → 0  is calculated 
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𝜙(𝑧) = lim𝑏→0
𝐵
𝑏
�log �𝑧 − �𝑎 + 𝑏𝑒𝛽�� − log(𝑧 − 𝑎)� = 𝐵

𝑎−𝑧
𝑒𝛽                                            (10) 

This potential depends on two parameters, the intensity 𝐵,  and the angular value 𝛽  indicating 
the dislocation doublet axis (Fig. 1(d)). 
    Let us consider Eqs. (9) and (10), by assuming 𝐵 = 𝐻  and 𝛽 = 𝛼 + 𝜋

2
 , a direct substitution 

demonstrates the equivalence of the potentials (c) and (d). This indicates that a dislocation 
doublet and a force doublet with the same intensity and mutually orthogonal directions produce 
the same stress field. 
 
3. Solution for curve crack problem: 
By placing a continuous distribution of dislocation doublet along the curve 𝐿 (Fig. 2), from (9) 
we can obtain the potential as follows: 
𝜙(𝑧) = 1

2𝜋 ∫
ℎ(𝑡)𝑑𝑡
𝑎−𝑧𝐿                                                                                                                    (11) 

Physically, the potential represents the continuous distribution of dislocation doublet along the 
curve  𝐿 , where the axis of doublet coincides with tangent of the curve (Fig. 2). In fact, since 
𝑑𝑡 = 𝑑𝑠 𝑒𝛼 as shown in Fig. 2, the integrand in (11) can be rewritten as 
1
2𝜋

ℎ(𝑡)𝑑𝑡
𝑎−𝑧

= ℎ(𝑡)𝑑𝑠
2𝜋

1
𝑎−𝑧

𝑒𝛼                                                                                                               (12) 
Which   is  the form of the potential shown in (9). 
In order to study the behavior of the relevant functions, we make the following definition: 
[𝑔(𝑎)] = 𝑔+(𝑎) − 𝑔−(𝑎) , (𝑎 ∈  𝐿)                                                                                                       (13) 
Where the superscript +(−) means the upper (lower) limit of the function 𝑔 approaching the curve 
𝐿 (Fig. 2). By the use of the Sokhotskii-Plemelj formula [4], from (11) we arrive at 
 

 
Fig. 2. Distribution of the dislocation doublet along a curve 𝐿 (𝑎 value representation of a point on the 
Curve  𝐿, 𝑠 − the relevant arc length coordinate). 
 
[𝜙(𝑎)] = �𝐺�𝜔(𝑎)�� = 𝐿(𝑎), [𝑓(𝑎)] = 0  , (𝑎 ∈ 𝐿)                                                                                                (14) 
This equation reveals that, when a moving point is normally passing through the curve𝐿, the 
displacement component 𝜔 is discontinuous, and the resultant force function is continuous, thus 
suggesting that the potential (11) can model the curve crack problem in antiplane elasticity. 
In the crack problem, we assume the stresses vanish and some traction is applied along the crack 
face. The resultant force function defined along the curve is denoted by  𝑓(𝑎) (𝑎 ∈ 𝐿)   . which can 
be evaluated from the traction applied to the crack. Letting 𝑧 → 𝑎0+  𝑜𝑟  𝑧 → 𝑎0−   (Fig. 2), in both 
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case we obtain the following singular integral equation: 
∫ ℎ(𝑡)𝑑𝑡

𝑎−𝑎0𝐿 = −2𝜋𝑓(𝑎0) + 𝑒1   [𝑎0 ∈ 𝐿]                                                                                        (15) 
Where  𝑒1  is a constant. 
In fact, in this case the original field can be decomposed into a uniform field defined by an 
infinite body without crack and a local field. By using (2), the resultant force function for the 
uniform field can be written as 
𝑓𝑢 = −𝜎𝑦𝑧∞𝑥 + 𝜎𝑥𝑧∞𝑦 − 𝑒1                                                                                                            (16) 
Where the subscript 𝑢 denotes the uniform field solution and 𝑒1  is a constant. 
For the local field, the remote stresses vanish and the tractions applied on the crack face are 
opposite to those acting in the same position in the uniform field. Therefore 
𝑓(𝑎0) + 𝑒1 = −𝑓𝑢(𝑎0) = 𝜎𝑦𝑧∞𝑥0 − 𝜎𝑥𝑧∞𝑦0 + 𝑒1   [𝑎0 ∈ 𝐿]                                                          (17) 
For convenience, we write the function �ℎ(𝑡)|𝑡=𝑡(𝑠) simply as ℎ(𝑠) which represents the crack 
opening displacement (COD). In antiplane elastic crack problem, at the vicinity of the left crack 
tip ℎ(𝑠) = 𝑂 �𝑠

1
2� (Fig. 2), therefore, the mode III stress intensity factors at the crack tips A and 

B can be obtained respectively by 

𝐾3𝐴 = 1
2�

𝜋
2

lim𝑠→0 ℎ(𝑠)𝑠−
1
2                                                                                                         (18) 

𝐾3𝐵 = 1
2�

𝜋
2

lim𝑠→0 ℎ(𝑠)(𝐿0 − 𝑠)−
1
2                                                                                             (19) 

𝐿0 being the length of the crack (Fig.2). 
4. Numerical solution and examples: 
In order to get a numerical solution, the curve crack can be approximated by a suitable sequence 
of 𝑁  segments connecting the points 𝑃0 ,𝑃1 , …  ,𝑃𝑗−1 ,𝑃𝑗 , …  ,𝑃𝑁−1 ,𝑃𝑁  (Fig. 3). In the local 
coordinates having origins in the segment midpoints the ℎ(𝑠) function can be approximated in 
the form [1] (Fig. 3). 

ℎ(𝑠1) = 𝑐1�
1
2
�1 + 𝑠1

𝑑1
�    , |𝑠1| ≤ 𝑑1                                                                                            (20) 

ℎ�𝑠𝑗� = 𝑐𝑗−1
2
�1 − 𝑠𝑗

𝑑𝑗
� + 𝑐𝑗

2
�1 + 𝑠𝑗

𝑑𝑗
�   , �𝑠𝑗� ≤ 𝑑𝑗   , 𝑗 = 2,3, … ,𝑁 − 1                                       (21) 

ℎ(𝑠𝑁) = 𝑐𝑁−1�
1
2
�1 + 𝑠𝑁

𝑑𝑁
�    , |𝑠𝑁| ≤ 𝑑𝑁                                                                                     (22) 

Where 𝑐1 , 𝑐2 , …  , 𝑐𝑁−2 , 𝑐𝑁−1 represent the COD values at the nodes 𝑃1 ,𝑃2 , …  ,𝑃𝑁−2,𝑃𝑁−1 
respectively. 
In the numerical solution, the integral condition (15) is imposed at the midpoint of any 
interval, 𝜙1 ,𝜙2 , …  ,𝜙𝑁−1 ,𝜙𝑁  (Fig. 3). This leads to the following integrals: 
𝐼1 = ∫ √1+𝑥

𝑥
1
0  𝑑𝑥 = √2 − log�√2 + 1�   ,   𝐼2 = ∫ 𝑑𝑥

𝑥
1
0 = 0                                                        (23) 
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                                              Fig. 3. A winding crack consisting of 𝑁 segments. 
𝐼3 = ∫ 𝑔(𝑥)𝑑𝑥 

𝑥−𝑝
   ,     𝑃 ∉ [0,1]      1

0                                                                                                               (24) 

The integral (25) being𝑔(𝑥) a regular function can be obtained by a numerical quadrature rule. 
The integral equation (15) is then reduced into the following system of algebraic equations: 
∑ 𝐷𝑗𝑘𝑁−1
𝑘=1 𝐶𝑘 = 𝐹𝑗 + 𝑒1  (𝑗 = 1,2, … ,𝑁)                                                                                      (25) 

Where the coefficients 𝐷𝑗𝑘   (𝑗 = 1,2, … ,𝑁 ,𝑘 = 1,2, … ,𝑁 − 1)   can be obtained from the 
assumed discretization shown by (20)-(22), and𝐹𝑗  (𝑗 = 1,2, … ,𝑁) can be obtained from the given 
boundary value at the point 𝑄𝑗(Fig. 3). In the present case, 𝜎𝑥𝑧∞   vanishes, and from (17) 
 𝑓(𝑎0) = 𝜎𝑦𝑧∞𝑥0 , thus, substituting the coordinate 𝑥0  for the point 𝑄𝑗  , the 𝐹𝑗 value is obtainable. 
By subtracting the 𝑁th equation from the 𝑗th equation (𝑗 = 1,2, … ,𝑁 − 1). 
∑ (𝐷𝑗𝑘𝑁−1
𝑘=1 −𝐷𝑁𝑘)𝐶𝑘 = 𝐹𝑗 − 𝐹𝑁  (𝑗 = 1,2, … ,𝑁 − 1)                                                                 (26) 

the constant 𝑒1 disappears, and 𝑁 − 1 equations for determining the 𝑁 − 1 unknowns 
𝐶1,𝐶2, … ,𝐶𝑁−2,𝐶𝑁−1 are obtained. 
On the basis of the obtained CODs: 𝐶1,𝐶2, … ,𝐶𝑁−2,𝐶𝑁−1  and Eqs. (18) and (19), the stress 
intensity factors at the tips 𝐴 and 𝐵 can be evaluated. 

𝐾3𝐴 = 1
4�

𝜋
𝑑1

 𝐶1 ,𝐾3𝐵 = 1
4�

𝜋
𝑑𝑁

 𝐶𝑁−1                                                                                           (27)   

In the following numerical examples the cracks were divided into 𝑁 = 80 equal segments. For 
an infinite body carrying a straight crack with length 2𝜄 loaded by the remote stress 𝜎𝑦𝑧∞  , the 
result is 𝐾3 = 1.0002𝜎𝑦𝑧∞ √𝜋𝜄  , which is very close to the exact solution  𝐾3 = 𝜎𝑦𝑧∞ √𝜋𝜄 expressed is 
[10] . 
For a bent crack under the remote stress 𝜎𝑦𝑧∞with an angle h . 45° (Fig. 4), the results, expressed 
as                  
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              Fig. 4  A  bent crack configuration. 

𝐾3𝐴 = 𝐹𝐴 �
𝑏
𝑙
� 𝜎𝑦𝑧∞ �

𝜋(𝑙+𝑏 cos𝜃)
2

  

𝐾3𝐵 = 𝐹𝐵 �
𝑏
𝑙
� 𝜎𝑦𝑧∞�

𝜋(𝑙+𝑏 cos𝜃)
2

                                                                                                     (28) 

are listed in Table 1 and compared with [9]. 
The angle 𝜃 was then changed in the interval [0° − 165°] for several ratios 𝑏

𝑙+𝑏
 The calculated 

results are expressed as 
 

𝐾3𝐴 = 𝐺𝐴 �
𝑏
𝑙+𝑏

,𝜃�𝜎𝑦𝑧∞ �
𝜋(𝑙+𝑏)

2
  

 
 
 

𝐾3𝐵 = 𝐺𝐵 �
𝑏
𝑙+𝑏

,𝜃�𝜎𝑦𝑧∞ �
𝜋(𝑙+𝑏)

2
                                                                                                    (29) 

Comparison of normalized stress intensity factors 𝐹𝐴 �
𝑏
𝑙
�  ,𝐹𝐵 �

𝑏
𝑙
� for the bent crack (see Fig. 4 

and Eq. (28)) 
 
              𝑏

 𝑙
  

 
            0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0 
 
 
𝐹𝐴𝑙      1.015  1.013  1.119  1.025  1.129  1.032  1.035  1.137  1.039  1.140 
 
 𝐹𝐴𝑏    1.008  1.014  1.020  1.025  1.028  1.031  1.034  1.036  1.037  1.038 
 
𝐹𝐵𝑙      0.915  0.925  0.869  0.875  0.868  0.860  0.853  0.839  0.845  0.842 
 
𝐹𝐵𝑏     0.916  0.898  0.884  0.873  0.864  0.856  0.850  0.845  0.841  0.837 
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𝑙 This paper. 
𝑏 In Ref. [3]. 
 
REMARKS:  
  Four types of potential obtained by placing some singular source at the point 𝑧 = 𝑎 , are 
introduced solving for antiplane curve crack problem. The COD  value derive directly from the 
solution of the singular equation. 
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